College Algebra Quick Reference Sheet

Set Notation		
Interval Notation	Set-Builder Notation	
(a, b)	$\{ x \mid a < x < b \}$	
[a,b]	$\{ x \mid a \leq x \leq b \}$	
[<i>a</i> , <i>b</i>)	$\{ x \mid a \leq x < b \}$	
(a,b]	$\{ x \mid a < x \le b \}$	
(a,∞)	$\{ x \mid a < x \}$	
$[a,\infty)$	$\{ x \mid a \leq x \}$	
$(-\infty, b)$	$\{ x \mid x < b \}$	
$(-\infty, b]$	$\{x \mid x \leq b\}$	

Set Operations		
Operation	Elements	Logic
Union U	All	OR
Intersection ∩	Common	AND

Coordinate Plane Quadrants	
II	Ι
III	IV

Distance and Midpoint Formulas

If $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ are two points, the distance between them is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

and the midpoint coordinates are

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Intercepts of an Equation	
x-intercepts	Set $y = 0$; solve for x
y-intercepts	Set $x = 0$; solve for y

Symi	Symmetry of the Graph of an Equation		
Type	Mathematical	Geometrical	
x-axis	Unchanged when y replaced by -y	Unchanged when reflected about x-axis	
y-axis	Unchanged when <i>x</i> replaced by - <i>x</i>	Unchanged when reflected about y-axis	
origin	Unchanged when y replaced by -y & x replaced by -x	Unchanged when rotated 180° about origin	

Function Notation $y = f(x)$	
Domain	Set of all valid x
Range	Set of all valid y

Function Arithmetic		
(f+g)(x) = f(x) + g(x)		
(f-g)(x) = f(x) - g(x)		
(fg)(x) = f(x)g(x)		
$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$		

Transformations of Graphs of Functions

$$y = g(x) = af(bx + h) + k$$

	Horizontal	Vertical
Shift	h > 0 (left)	k > 0 (up)
	h < 0 (right)	k < 0 (down)
Reflect	b < 0 (y-axis)	a < 0 (x-axis)
Scale	b > 1	a > 1
Scale	(compress)	(expand)

- 1. **Subtract h** from each of the **x-coordinates** of the points on the graph of f. This results in a horizontal shift to the **left** if h > 0 (positive h) or **right** if h < 0 (negative h).
- 2. **Divide** the **x-coordinates** of the points on the graph obtained in **Step 1** by **b**. This results in a horizontal scaling, but may also include a reflection about the y-axis if b < 0 (negative b).
- 3. **Multiply** the **y-coordinates** of the points on the graph obtained in **Step 2** by a. This results in a vertical scaling, but may also include a reflection about the x-axis if a < 0 (negative a).
- 4. Add k to each of the v-coordinates of the points on the graph obtained in Step 3. This results in a vertical shift **up** if k > 0 (positive k) or **down** if k < 0 (negative k).

Properties of Equality

If a = b then a + c = a + c and a - c = a - c

If a = b and $c \neq 0$ then ac = bc and $\frac{a}{b} = bc$

Properties of Inequalities

If a < b then a + c < b + c and a - c < b - c

If a < b and c > 0 then ac < bc and $\frac{a}{c} < \frac{b}{c}$

If a < b and c < 0 then ac > bc and $\frac{a}{c} > \frac{b}{c}$

Lines or Linear Functions

Slope of Line through points $(x_1, y_1) & (x_2, y_2)$

$$m = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope-Intercept Form - slope m and point (0, b)y = f(x) = mx + b

Point-Slope Form - slope m and point (x_1, y_1) $y - y_1 = m(x - x_1)$

or

$$y = f(x) = m(x - x_1) + y_1$$

Horizontal Line through point (0, b)

$$y = f(x) = b$$

Vertical Line through point (a, 0)

$$x = a$$

Average Rate of Change

The average rate of change m for function y=f(x)between x=a and x=b is

$$m = \frac{\text{change in } y}{\text{change in } x} = \frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

Absolute Value Properties

	•
$ a = \begin{cases} -a, \\ a, \end{cases}$	if $a < 0$ if $a \ge 0$
$ a \ge 0$	-a = a
ab = a b	$\left \frac{a}{b}\right = \frac{ a }{ b }$

Absolute Value Function as a **Piecewise-Defined Function**

$$f(x) = |g(x)| \to f(x) = \begin{cases} -g(x), & g(x) < 0 \\ g(x), & g(x) \ge 0 \end{cases}$$

Absolute Value Equations and Inequalities

If c is a positive number:

$$|x| = c \rightarrow x = -c \text{ or } x = c$$

$$|x| < c \rightarrow -c < x < c$$

$$|x| \le c \to -c \le x \le c$$

$$|x| > c \rightarrow x < -c \text{ or } x > c$$

$$|x| \ge c \to x \le -c \text{ or } x \ge c$$

Parabolas or Quadratic Functions

General Form

$$y = f(x) = ax^2 + bx + c$$

The graph has a smile if a is positive and a frown if a is negative, and has a vertex at coordinates:

$$\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$$

Vertex Form

$$y = f(x) = a(x - h)^2 + k$$

The graph has a smile if a is positive and a frown if a is negative, and has a vertex at (h, k).

Special Factoring Formulas

$$x^2 + a^2 = \text{No Real Factors}$$

$$x^2 - a^2 = (x + a)(x - a)$$

$$x^{2} + 2ax + a^{2} = (x + a)^{2}$$
$$x^{2} - 2ax + a^{2} = (x - a)^{2}$$

$$x^3 + a^3 = (x + a)(x^2 - ax + a^2)$$

$$x^3 - a^3 = (x - a)(x^2 + ax + a^2)$$

Special Product Formulas

$$(x+a)(x-a) = x^2 - a^2$$

$$(x + a)^2 = x^2 + 2ax + a^2$$

$$(x-a)^2 = x^2 - 2ax + a^2$$

$$(x + a)^3 = x^3 + 3ax^2 + 3a^2x + a^3$$

$$(x-a)^3 = x^3 - 3ax^2 + 3a^2x - a^3$$

Quadratic Formula

Solve
$$ax^2 + bx + c = 0$$
, $a \ne 0$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If $b^2 - 4ac > 0$, then 2 real unequal solutions

If $b^2 - 4ac = 0$, then 2 real duplicate solutions

If $b^2 - 4ac < 0$, then no real solutions

Factored Form for real factors:

$$y = f(x) = a(x - x_1)(x - x_2)$$

College Algebra Quick Reference Sheet

End Behavior of a Polynomial Function $f(x) = ax^n + \cdots$		
n	а	Behavior
odd	<i>a</i> > 0	$x \to -\infty, f(x) \to -\infty$ $x \to \infty, f(x) \to \infty$
odd	<i>a</i> < 0	$x \to -\infty, f(x) \to \infty$ $x \to \infty, f(x) \to -\infty$
even	a > 0	$x \to -\infty, f(x) \to \infty$ $x \to \infty, f(x) \to \infty$
even	a < 0	$x \to -\infty, f(x) \to -\infty$ $x \to \infty, f(x) \to -\infty$

Multiplicities of Real Zeros of a Polynomial Function $f(x) = (x - a)^m$	
m Behavior	
odd	Crosses the <i>x</i> -axis
even	Touches the <i>x</i> -axis

Rational Functions

Vertical Asymptotes (No Holes)

If a factor (x-a) appears in the denominator (but not in the numerator), the line x=a is a vertical asymptote.

Horizontal Asymptote

If the degree of the numerator is less than the degree of the denominator, then there is a horizontal asymptote at y = 0 (x-axis).

If the degree of the numerator is the same as the degree of the denominator, then there is a horizontal asymptote at *y*= (leading coefficient of numerator) / (leading coefficient of denominator).

If the degree of the numerator is greater than the degree of the denominator, then there is not a horizontal asymptote.

Composition of Functions

$$(f \circ g)(x) = f(g(x))$$

Inverse Function

Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A. Each point with coordinates (a, b) in f has a corresponding point (b, a) in f^{-1} .

Steps for Finding the Inverse Function

- 1. Replace f(x) with y.
- 2. Interchange *x* and *y*.
- 3. Solve for v.
- 4. Replace y with $f^{-1}(x)$.

Inverse Function Property

Let f be a one-to-one function with domain A and range B. The inverse function f^{-1} satisfies the following cancelation properties.

$$f^{-1}(f(x)) = x$$
 for every x in A
 $f(f^{-1}(x)) = x$ for every x in B

Radical Properties		
$\sqrt[n]{a} = a^{1/n}$	$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$	
$\sqrt[n]{\frac{\overline{a}}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$	
$\sqrt[n]{a^n} = a$ if n is odd		
$\sqrt[n]{a^n} = a $ if n is even		

Exponent Laws and Properties	
$a^0=1, a\neq 0$	$a^{-n} = \frac{1}{a^n}, a \neq 0$
$a^m a^n = a^{m+n}$	$\frac{a^m}{a^n} = a^{m-n}$
$(a^m)^n = a^{mn}$	$a^{m/n} = \sqrt[n]{a^m}$
$(ab)^n = a^n b^n$	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$	$\frac{a^{-n}}{b^{-m}} = \frac{b^m}{a^n}$

Logarithm Definition

$$\log_a x = y \leftrightarrow a^y = x \text{ where } a > 0 \& a \neq 1$$

Logarithm Example

$$\log_2 32 = 5 \leftrightarrow 2^5 = 32$$

Special Logarithms	
Common Logarithm	$\log x = \log_{10} x$
Natural Logarithm	$ \ln x = \log_e x $
where $e = 2.718281828459045 \dots$	

Logarithm Properties		
$\log_a 1 = 0$	ln 1 = 0	
$\log_a a = 1$	$\ln e = 1$	
$\log_a a^x = x$	$ \ln e^x = x $	
$a^{\log_a x} = x$	$e^{\ln x} = x$	

Laws of Logarithms	
Product Rule	$\log_a(AB) = \log_a A + \log_a B$
Quotient Rule	$\log_a(A/B) = \log_a A - \log_a B$
Power Rule	$\log_a(A^C) = C \log_a A$

Logarithm Change of Base Formula

$$\log_a x = \frac{\log x}{\log a} \text{ or } \log_a x = \frac{\ln x}{\ln a}$$

Steps to Solve an Exponential Equation

- 1. Isolate the exponential function.
- 2. Take the appropriate logarithm of both sides.
- 3. Use the inverse function property.
- 4. Solve for the variable.

Steps to Solve a Logarithmic Equation

- 1. Isolate the logarithmic function.
- 2. Use the appropriate base to raise both sides.
- 3. Use the inverse function property.
- 4. Solve for the variable.
- 5. Remove false answers (look for domain errors).

Arithmetic Sequence

Definition: a, a + d, a + 2d, a + 3d, a + 4d, ...

$$n^{th}$$
 term: $a_n = a + (n-1)d$

nth partial sum:

$$S_n = \frac{n}{2} [2a + (n-1)d] \text{ or } S_n = n \left(\frac{a_1 + a_n}{2}\right)$$

Geometric Sequence

Definition: $a, ar, ar^2, ar^3, ar^4, ...$

$$n^{th}$$
 term: $a_n = ar^{n-1}$

nth partial sum:

$$S_n = a \frac{1 - r^n}{1 - r}$$
 or $S_n = \frac{a_1 - a_{n+1}}{1 - r}, r \neq 1$

Finance Formulas

For all formulas:

 A_f is the future amount

 A_p is the present amount

t is the number of years

r is the annual interest rate (decimal)

n is the number of periods in a year

i = r/n is the interest rate per period

R is the periodic payment amount

Simple Interest

$$A_f = A_p(1+rt)$$

Compound Interest

$$A_f = A_p (1+i)^{nt} \text{ or } A_f = A_p \left(1 + \frac{r}{n}\right)^{nt}$$

Continuously Compounded Interest

$$A_f = A_n e^{rt}$$

Future Value of an Annuity

$$A_f = R \frac{(1+i)^{nt} - 1}{i}$$

Present Value of an Annuity

$$A_p = R \frac{1 - (1+i)^{-nt}}{i}$$

Payment Amount of a Loan

$$R = A_p \frac{i}{1 - (1+i)^{-nt}}$$

College Algebra Formula Card

Page 3

The difference quotient is the same as the average rate of change.

Two lines are perpendicular if and only if their slopes are negative reciprocals of each other:

$$m_1 = \frac{-1}{m_2}$$

Circle, centered at (h, k) with radius r: $(x - h)^2 + (y - k)^2 = r^2$

The number of positive real zeroes of f is either the number variations in sign of f(x) or less than that number by an even integer.

The number of negative real zeroes of f is either the number variations in sign of f(-x) or less than that number by an even integer.